If it's not what You are looking for type in the equation solver your own equation and let us solve it.
86x^2+90x=223
We move all terms to the left:
86x^2+90x-(223)=0
a = 86; b = 90; c = -223;
Δ = b2-4ac
Δ = 902-4·86·(-223)
Δ = 84812
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84812}=\sqrt{4*21203}=\sqrt{4}*\sqrt{21203}=2\sqrt{21203}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{21203}}{2*86}=\frac{-90-2\sqrt{21203}}{172} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{21203}}{2*86}=\frac{-90+2\sqrt{21203}}{172} $
| 384/x-10=24 | | 4(m+3)=2(m+4) | | 18*x=30 | | 1/4x-12=-10 | | 6=-4/3x+2 | | 7x-5x+2=5x-x | | -11g=10-12g | | 7-4x=-12 | | x*4+50=61 | | 3(v+4)=18 | | 24=5u-26 | | 4x+19=11x+10 | | 3(u-19)=-3 | | 2x^2+6x-4=-2 | | 180=11x+4+6x-1+75 | | -13=2d+3 | | 1.6/d+31=40 | | (x+53)+(13x-27)=180 | | 8x^2-24-20=0 | | 2-0.3(x-4)=3x+0.7+3.2 | | -3(p+12)=-16 | | 10+30x–54=74x | | 3/2-7x/4=(5(2-x))/2-1 | | 4(3x+9)=-29+53 | | -12=2/n-6 | | -2=-2(d-15) | | 9+4n=-35 | | 28x-532=140 | | a/5+50=56 | | -35-9=x | | 29x-574=93 | | v-42=12 |